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A simplified model of operation of a flow classification apparatus of finite length for the case of a low-con-
centrated suspension has been analyzed. An analytical and numerical analysis of the behavior of the separa-
tion function has been made. Particular emphasis has been placed on such characteristics of classification as
the size and sharpness of separation. A self-similar solution for the concentration of particles in each phase
has been obtained and compared to the numerical solution.

Introduction. Classification processes in technology are often based on the action of a force directed trans-
versely to the flow of a suspension which is allowed to pass through the apparatus [1, 2]. The drift of particles which
is caused by this force leads to their deposition on the wall. The drift velocity grows with particle size and, conse-
quently, large particles are deposited faster than small ones. Therein, in essence, lies the classification effect. In the ab-
sence of accompanying phenomena (unequal inlet conditions for different particles and the complexity of flow
including turbulence), the sharpness of separation would be absolute; all particles smaller than a certain critical dj

∗ in
size would escape from the apparatus, whereas large ones with dj > dj

∗ would be trapped.
Below, we consider a schematic classifier of the type of hydrocyclones [1–4] for which one has currently de-

veloped quite reliable calculation methods and for which there are numerous computational formulas of empirical char-
acter [2, 4].

The approximate-analytical methods have been summarized in [2, 3, 5] and a numerical analysis of the proc-
esses in the apparatus has been performed in [6]. At the same time, a number of important aspects of the classification
process have yet to be included into consideration. One can establish their significance by modeling the process in a
formulation not involving numerous accompanying details which make the analysis more difficult. One such problem
is the significance of the finiteness of the time of residence of particles in the apparatus.

In the present work, we analyze the influence of the nonequilibrium of the transport of particles on the char-
acteristics of classification based on the ideas of a diffusion-turbulent model of the process in the apparatus [2, 7, 8];
according to this model, the transfer of particles to the exterior wall due to the centrifugal force is opposed by the
diffusion flow caused by the high level of turbulence. It takes a certain time or, in terms of the stationary regime, a
certain apparatus length to attain such an equilibrium of forces; clearly, this equilibrium does not have to exist for
fairly short apparatuses. A similar formulation of the problem was proposed in [8] and was considered further in [9],
but it was not adequately analyzed. A substantially close model was developed in [10]. In this work, the stochastic
Kolmogorov–Fokker–Planck equation for the probability density of stay of a particle at a certain point of flow at a
certain instant of time was used instead of the introduction of a forward diffusion particle flux. Clearly, it is possible
and expedient to pass to the terms of diffusion theory, since this circumvents the difficulties of formulating boundary
conditions. Unlike [10], we have abandoned the special properties of a centrifugal classifier, setting (following [8, 9,
11]) all the hydrodynamic velocities inside the apparatus to be coordinate-independent, which gives us an approach to
obtaining analytical solutions.

Formulation of the Problem. Classification-Apparatus Model. We consider a classification apparatus (Fig. 1)
into which a two-phase mixture flows with a constant velocity U on the left (liquid with solid-particle fractions) and
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flows out on the right through upper and lower outlets. Furthermore, each particle of the jth fraction shifts downward
(sediments) with a certain velocity Vsj which is the higher, the larger the particle of the jth fraction.

Let us assume that the sedimentation velocities of particles of different fractions are dependent just on the size
dj of this fraction’s particles. Then the equation of variation in the particle concentration with space for each fraction
together with the boundary conditions will be written in dimensionless form as follows:

∂θj

∂ξ
 + 

∂
∂η

 



Pejθj − 

∂θj

∂η



 = 0 , (1)

at the classifier inlet, we prescribe the initial concentrations of particles

θj

ξ=0

 = 1 , (2)

on the classifier wall, we set the condition of equality of particle fluxes to zero




Pejθj − 

∂θj

∂η












η=0
η=1

 = 0 ,
(3)

where

θj = 
cj

cj0

 ;   ξ = 
xD

h
2
U

 ;   η = 
y

h
 .

Here the dimensionless parameter Pej = hVsj
 ⁄ D characterizes the size of the jth fraction’s particles. The coefficient of

turbulent diffusion of particles D is considered to be a constant.
Integrating (1) from 0 to 1 with respect to η, we obtain the relation

 ∫ 
0

1

θj (ξ, η) dη = 1 . (4)

Determination of the Separation Curve. Let the width of the upper outlet be hov; then h − hov is the width of
the lower outlet. The ratio S = hov/(h − hov) = ηov/(1 − ηov) is called a split parameter whose value is usually about
10. Here we have ηov = hov

 ⁄ h.

Fig. 1. Diagram of a classification apparatus: 1) inlet portion; 2) overflow
launder; 3) underflow launder.
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The rate of flow of the particles of the jth fraction through the lower and upper outlets respectively is usually
determined by the following functions:

Runj (ξ) = ∫ 

η0

1

θj (ξ, η) dη , (5)

Rovj (ξ) = ∫ 
0

η0

θj (ξ, η) dη . (6)

They characterize the degree of separation of particles in each fraction. Large particles mostly pass through the over-
flow launder, whereas small ones pass through the underflow launder. The separation function determining the fraction
of particles of a given fraction which is removed through the lower outlet is described, according to the separation
model [2], by the following dependence:

T (Pej, ξ) = 
Runj (ξ)

Runj (ξ) + Rovj (ξ)
 . (7)

Using the fact that the longitudinal rate of feed of a suspension is presumably constant, we rewrite (7) with account
for (4)–(6) in the form

T (Pej, ξ) = 

∫ 
η0

1

θj (ξ, η) dη

∫ 

0

η0

θj (ξ, η) dη + ∫ 

η0

1

θj (ξ, η) dη

 = ∫ 

η0

1

θj (ξ, η) dη =  ∫ 
S

1+S

1

 θj (ξ, η) dη . (8)

A point separation function [2] can be another possible characteristic of separation. In this case, one uses certain av-
erage values of concentrations in the cross section ξ (for example, in outlets) in (8). Accordingly the separation func-
tion has the form

T (Pej, ξ) = 



1 + S 

θovj (ξ)
θunj (ξ)





−1

(9)

with certain average values of concentrations in these outlets. Thus, one frequently uses the computational formula

T (Pej, ξ) = 



1 + S 

θj (ξ, 0)
θj (ξ, 1)





−1

 , (10)

which differs from (9) in that it contains the values of concentrations on the apparatus walls.
Naturally, the expression with the values of concentrations taken at the center of the outlets

T (Pej, ξ) = 



1 + S 

θj (ξ, ηov
 ⁄ 2)

θj (ξ, (1 + ηov) ⁄ 2)




−1

(11)

would be closer from the viewpoint of determination (7). The most important parameters characterizing the classifica-
tion effect [2, 3] are
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(a) the parameter Pe[50] yielding the diameter of separation of particles 50% of which arrive at the lower outlet;
(b) the sharpness of separation Q, which is determined by the ratio of the particle diameters corresponding to

values of the separation function of 0.25 and 0.75:

Q = 
Pe

[25]

Pe
[75]

 . (12)

Analytical Solution of the Problem. Total Equilibrium. A concentration profile of the particles of each phase
is established as the suspension moves along the channel. The final concentration profile is determined by the equilib-
rium of the sedimentation and diffusion rates.

The analytical solution of problem (1)–(4) for ξ → ∞ is as follows:

θj (∞, η) = 
Pej

exp (Pej) − 1
 exp (Pej η) . (13)

Accordingly, the separation function (8) computed based on (13) will have the form

T (Pej) = 

1 − exp 



− 

Pej

1 + S





1 − exp (Pej)
 , (14)

according to determination (10), it will be

T (Pej) = (1 + S exp (− Pej))
−1 (15)

or, computed based on (11), it appears as

T (Pej) = (1 + S exp (− Pej
 ⁄ 2))−1

 . (16)

These three formulas are qualitatively the same, but their quantitative characteristics can strongly differ. If we use de-
termination (15), then Pe[50] = ln S and (16) yields a value twice as high. The use of (14) necessitates solution of a
transcendental equation.

Figure 2a shows Pe[50] as a function of the parameter S in the case where different forms of determination of
the separation function are used. Qualitatively the curves behave in the same manner but they strongly differ quantita-
tively. It is significant that all three models yield a uniquely growing dependence of Pe[50] on the split parameter S.

Fig. 2. Pe[50] (a) and sharpness of separation (b) vs. split parameter S in the
methods of determination of the separation function according to: 1) (14); 2)
(15); 3) (16); 4) (17).
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The sharpness of separation, calculated using (15) and (16), is a slowly growing function of S:

Q = 
ln (S ⁄ 3)
ln (3S)

 . (17)

The resulting curves are shown in Fig. 2b. According to the model (8), the sharpness of separation grows with S even
more slowly than that following the logarithmic law (17).

Establishment of Equilibrium. For apparatuses of finite length, analytical solution of problem (1)–(4) by the
Fourier method [12] yields

θj (ξ, η) = 
Pej

exp (Pej) − 1
 exp (Pej η) + 2Pej exp (Pej η ⁄ 2)∑ 

n=1

∞

 1 + (− 1)n+1
 exp (Pej

 ⁄ 2) ×

× 
cos (πnη) + (Pej

 ⁄ 2πn) sin (2πn)

(πn + Pej
 ⁄ 4πn)2  exp − (π2

n
2
 + Pej

2 ⁄ 4) ξ
 . (18)

For fairly large ξ, confining ourselves to the first term of the sum in (18), we obtain the self-similar solution

θj (ξ, η) = θj (∞, η) + Fj (η) exp − (π2
 + Pej

2 ⁄ 4) ξ
 , (19)

where

Fj (η) = 2Pej exp (Pej η ⁄ 2) [1 + exp (− Pej
 ⁄ 2)] 

cos (πη) + (Pej
 ⁄ 2π) sin (2π)

(π + Pej
2 ⁄ 4π)2  .

Based on (19), we take the following expression for concentration:

θj (ξ, η) = θj (∞, η) + (1 − θj (∞, η)) exp − (π2
 + Pej

2 ⁄ 4) ξ
 , (20)

which corresponds to the relaxation-type equation

∂θj

∂ξ
 = − π2

 + Pej
2 ⁄ 4

 θj (ξ, η) − θj (∞, η)

with condition (2) at the apparatus inlet. The self-similar solution (20) is quite close to the exact solution for ξ > 0.1,
as a comparison to the numerical calculation shows.

We find an expression for the characteristic relaxation length, setting (π2 + Pej
2 /4)ξ = 1. Here we have

ξrj = π
2
 + Pej

2 ⁄ 4


−1
 . (21)

In particular, from (21) for Pej = 1 we obtain that ξrj C 0.1.
Formula (21) in dimensional variables has the following form:

U

xrj

 = π2
 
D

h
2 + 

Vsj
2

4D
 . (22)

In (22), we can single out the characteristic times of the process of classification, namely, the diffusion time (td =
h2 ⁄ D), the sedimentation time (tsj = h ⁄ Vsj), and the time of residence of particles in the zone where their concentra-
tion is established (trj = xrj

 ⁄ U); this time is determined by the relation
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1

trj
 = 

π2

td
 






1 + 

td
2

4tsj
2







 .

It is clear from (21) that the relaxation length decreases with increase in the parameter Pej. Since higher Pej
values correspond to larger particles (with a higher settling rate), the concentration of such particles is established at a
shorter distance from the apparatus inlet than that in the case of small particles.

Numerical Analysis. The main conclusions drawn analytically can be substantiated and supplemented with the
data based on numerical calculations in which Pej values varied between 0.01 and 100.

Figure 3 shows the pattern of establishment of the concentration of particles of different size (characterized by
the value of Pej) on the opposite walls of the apparatus. The particle concentration decreases at the upper boundary of
the classification apparatus (η = 0) and increases at the lower boundary (η = 1). The larger the size of a particle, i.e.,
Pej, the higher its settling rate; consequently, the influence of diffusion effects is small and particles sediment down-
ward more quickly. As the particle size decreases, the settling rate becomes lower and the influence of the diffusion
effect becomes stronger, because of which the concentration gradients of small particles across the apparatus disappear.
As the analytical solution of (21) shows, the length on which the value becomes steady-state is dependent on the value
of the Pe′clet number. The larger the Pej, the shorter the distance to the apparatus inlet at which the steady-state value
of the particle concentration is attained, which is confirmed by Fig. 3.

In numerical solution of the problem, we have obtained the separation function from formula (8) as a function
of Pej (Fig. 4) for different ξ values. As ξ increases, an increasing portion of the particles of each fraction is removed
through the underflow launder of the separation apparatus. Only the largest particles (with Pej >> 100) can pass
through this launder when the apparatus is very short (ξ = 0.01).

Here and in what follows, we use the determination of the separation function according to formula (8) to
plot Pe[50] as a function of ξ (Fig. 5). It is clear from the figure that the separation diameter decreases with increase
in ξ on the initial portion of the Pe[50](ξ) curve, i.e., the value of the parameter Pej (and of the particle size), which
corresponds to the fraction of particles half-settled below the line of the outlet, decreases with increase in the apparatus
length. With further increase in ξ, the value of Pe[50] becomes constant, since the settling of smaller particles is coun-
terbalanced by diffusion. The value of Pe[50] increases with split parameter S when the dimension of the underflow
launder decreases relative to the dimension of the overflow launder.

The form of the dependence of the sharpness of separation on the apparatus length ξ for different values of
the parameter S, which has been determined from formula (12) using the concentration fields obtained numerically
and based on the self-similar solution (20), is shown in Fig. 6. The variations for low values of ξ are natural, since
the self-similar solution (20) is correct only for fairly high ξ values. The value of the sharpness of separation Q
drops with increase in ξ, except for the case of short apparatuses. The form of the function Q(ξ) is determined by

Fig. 3. Concentration of particles on the walls of the apparatus vs. its length
ξ for different values of Pej: a) Pej = 0.2; b) 1.0; c) 5.0; 1) η = 0; 2) 1.

Fig. 4. Separation function vs. Pej (S = 9): 1) ξ = 0.01; 2) 0.03; 3) 5.0.
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the character of establishment of Pej
[25] and Pej

[75]. The concentration distribution of large particles is established
much faster than that of small particles (see (22)). Therefore, on the initial portion of the apparatus, Pej

[75] drops to
its steady-state value much faster than Pej

[25] with increase in ξ. Accordingly, Q ì 1/ Pej
[75] grows. Once the concen-

tration of relatively large particles has been established, Pej
[75] begins to slowly drop with growth in ξ because of

the counteraction of diffusion. In so doing, Q ì 1/Pej
[75] also drops down to its limiting value. It follows from Fig.

6 that the quality of separation of particles in the apparatus becomes worse with decrease in the parameter S, since
the lower outlet of the apparatus increases and, consequently, the portion of particles of each fraction which is re-
moved through this outlet grows.

From the results (presented in Figs. 5 and 6) of the numerical calculation, we can draw the following conclu-
sion: on the one hand, to attain a lower value of Pe[50] (Fig. 5), as is often important in practice, one should use a
fairly long classification apparatus; on the other, one must use a shorter apparatus to obtain the maximum sharpness
of separation (Fig. 6).

Conclusions. Sedimentation and diffusion fluxes in a flow apparatus counterbalance each other at a distance
from the outlet, shorter for large particles than that for small ones. A self-similar particle-concentration profile passing
to a limiting one (dependent just on the distance to the walls) is established at a certain distance from the apparatus
inlet. The difference in the quantitative characteristics of the separation function is substantially dependent on the
method of its computation.

The separation size and the sharpness of separation grow with split parameter. The separation curve shifts to
the region of smaller particles with elongation of the apparatus. The quality of separation drops, except for very short
apparatuses.

This work was carried out with financial support from the Bayerische Forschungsstiftung Foundation and par-
tial financial support from the Ministry of Education and Science of the Russian Federation and CRDF within the
framework of the BRHE program, project No. 016-02.

NOTATION

cj, concentration of particles of the jth fraction, kg⋅m−3; dj, size of a particle of the jth fraction, m; D, coef-
ficient of diffusion of particles, m⋅sec−2; h, height of the classification apparatus, m; hov, height of the overflow laun-
der, m; n, ordinal number of the term in the Fourier sum; Pej, Pe′clet number for particles of the jth fraction; Pe[25],
Pe[50], and Pe[75], Pe′clet numbers obtained from values of the separation function of 0.25, 0.50, and 0.75 respectively;
Q, sharpness of separation; Runj and Rovj, portion of the jth fraction’s particles escaping through the lower and upper
outlets of the apparatus; S, split parameters; t, time, sec; T, separation function; U, rate of feed of a two-phase mixture

Fig. 5. Influence of the value of the split parameter S on Pe[50] as a function
of the apparatus length ξ: 1) S = 4; 2) 9; 3) 19.

Fig. 6. Sharpness of separation, calculated numerically (solid curves) and based
on the self-similar solution for concentration (20) (dashed curves) vs. apparatus
length for different values of S: 1) S = 4; 2) 9.
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to the apparatus, m⋅sec−1; Vsj, sedimentation rate of a particle of the jth fraction, m⋅sec−1; x and y, coordinates along
the abscissa and ordinate axes, m; η, dimensionless coordinate along the ordinate axis; θj. dimensionless concentration
of the jth fraction; θunj and θovj, average value of the dimensionless concentration of the particles of the jth fraction
respectively in the lower and upper outlets; ξ, dimensionless coordinate along the abscissa axis (along the apparatus
length); ξr, dimensionless characteristic relaxation length. Subscripts: un and ov, lower (underflow) and upper (over-
flow) outlets; 0, at the apparatus inlet; j, fraction No.; d, diffusion; s, sedimentation; r, relaxation (time of residence of
particles in the zone where the concentration is established); *, critical.
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